
When Should There be a “Me” in “Team”?
Distributed Multi-Agent Optimization Under Uncertainty

Matthew E. Taylor, Manish Jain, Yanquin Jin�, Makoto Yooko†, and Milind Tambe
University of Southern California, Los Angeles, CA {taylorm,manishja,tambe}@usc.edu

�Tsinghua University, Beijing, China jinyq06@gmail.com
†Kyushu University, Fukuoka, Japan yokoo@is.kyushu-u.ac.jp

ABSTRACT
Increasing teamwork between agents typically increases the per-
formance of a multi-agent system, at the cost of increased com-
munication and higher computational complexity. This work ex-
amines joint actions in the context of a multi-agent optimization
problem where agents must cooperate to balance exploration and
exploitation. Surprisingly, results show that increased teamwork
can hurt agent performance, even when communication and com-
putation costs are ignored, which we term the team uncertainty
penalty. This paper introduces the above phenomena, analyzes it,
and presents algorithms to reduce the effect of the penalty in our
problem setting.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents

General Terms
Algorithms, Experimentation

Keywords
Coordination, DCEE, DCOP, Multi-agent Exploration and Exploita-
tion, Multi-agent Optimization

1. INTRODUCTION
A significant body of work in multiagent systems over more

than two decades has focused on teamwork [4, 8, 17]. If coop-
erative agents can efficiently make joint decisions, so the common
wisdom goes, the team as a whole will only benefit [18] — pro-
vided the increased coordination and communication overheads do
not overwhelm the agents.1 This paper introduces the team un-
certainty penalty: joint decisions by a team of agents acting under

1This paper focuses on cooperative multi-agent problems where
all agents may be considered part of a single team as they share
a common reward function. However, we use the term “level of
teamwork” to refer to the amount of partial centralization among
agents, reflected in how much information they share, how they
coordinate actions, and how many agents may simultaneously per-
form a joint action. More precisely, higher level of teamwork will
refer to higher values of k in the k-optimal algorithms that follow
in Sections 2.1 and 3.

Cite as: When Should There be a “Me” in “Team”? Distributed Multi-
Agent Optimization Under Uncertainty, M. E. Taylor, M. Jain, Y. Jin,
Makoto Yooko, and M. Tambe, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

uncertain conditions can lead to a significant degradation in team
performance, relative to agents acting alone. Contrary to popular
wisdom, the problem is not the cost of increased communication
or computation in service of the joint decision; the problem is the
joint decision itself.

Before discussing this paper’s investigation of the penalty, first
consider the Distributed Constraint Optimization Problem (DCOP)
[10, 12, 14] formulation. In DCOPs, agents attempt to maximize a
global reward function by changing local variables to optimize con-
straints. Variable settings are only observable by the agent that con-
trols the variable and constraints are only observed by the agents
sharing the constraint. Complete DCOP algorithms find optimal
solutions but are NP-hard and do not scale to large domains due
to computation and communication costs [12], while incomplete
algorithms provide only locally optimal solutions but are able to
scale significantly better.

One type of incomplete DCOP algorithm, termed k-optimal [9,
13], allows k agents to coordinate variable changes at any given
time. K-optimal algorithms have proven solution quality guaran-
tees and they discover solutions where k or fewer agents cannot
change values together to improve performance. For example, k=2
corresponds to pairs of agents taking joint actions in a DCOP, reach-
ing a 2-optimal solution. Algorithms that use higher values of k,
increasing the amount of partial centralization, have been shown
to effectively better optimize the global reward. However, this re-
quires additional computation and communication costs [9, 13].

Rather than using the standard DCOP formulation, this study al-
lows uncertainty in the world model. We define Distributed Coor-
dination of Exploration and Exploitation (DCEE) problems in Sec-
tion 2.1, in which agents must balance coordinated exploration of
an unknown environment with exploitation of their rewards to best
maximize the total reward. Examples of such real world problems
include network routing optimization, repeated task allocation, and
mobile network optimization.

DCEE algorithms must differ from DCOP algorithms along mul-
tiple dimensions. DCEE agents do not know their reward func-
tions, are unable to exhaustively explore the environment (which is
assumed to be very large or even infinite), and agents seek to max-
imize their online reward. It is precisely for these reasons that one
might assume teamwork would always be advantageous. Unfortu-
nately, in some settings the teamwork uncertainty penalty reduces
performance. After discussing this phenomena, two types of al-
gorithms are introduced to help ameliorate this penalty: the first
improve performance by disallowing teamwork in certain settings,
and the second by discounting actions that have uncertainty.

This paper has several contributions, including: (1) extending
existing k=1 algorithms for DCOPs with unknown reward matrices
to k=2, (2) empirically analyzing the tradeoffs of these algorithms,

109

109-116



(3) explaining the surprising behavior where increased teamwork
decreases performance, and (4) presenting algorithms designed to
avoid this phenomena. Our hope is that in addition to algorithms for
DCEE-like problems, other algorithms will also benefit from this
investigation. The primary conclusion of this paper is the somewhat
counter-intuitive result that when there is uncertainty, increasing
the amount of teamwork may be harmful.

2. BACKGROUND
This section defines the DCEE problem class, describes the mo-

bile wireless network problem later used as an experimental testbed,
and discusses existing DCEE algorithms.

2.1 Problem Definition
This section formally defines DCEE domains, first introduced

elsewhere [5]. A DCEE consists of a set V of n variables, {x1, x2,
. . . , xn}, assigned to a set of agents, where each agent controls one
(or more) variable’s assignment. Agents have at most T rounds
to modify their variables xi, which can take on any value from
the finite domain Di. The goal of such a problem is for agents to
choose values for the variables such that the cumulative sum over a
set of binary constraints and associated payoff or reward functions,
fij : Di×Dj → �, is maximized over time horizon T ∈ N. More
specifically, the agents attempt to pick a set of assignments (one
per time step: A0, . . . , AT ) such that the total reward (the return)
is maximized:

R =

TX
t=0

X
xi,xj∈V

fij(di, dj),

where di ∈ Di, dj ∈ Dj and xi ← di, xj ← dj ∈ Ak. Take the
constraints in Figure 1 as an example. x1, x2, and x3 are variables,
each with a domain and global reward function as shown. If all
agents choose the value 0, the total solution quality of this complete
assignment on the time step it is chosen is 7 + 15 = 22.

As in a DCOP, DCEE agents work to maximize the team’s re-
ward, the sum of their rewards. Agents in a DCOP are traditionally
assumed to have a priori knowledge of the reward function. In or-
der to more flexibly model a class of real world domains, DCEE
problems do not make this assumption. Thus, DCEE problems
appear similar to DCOPs, but with the following features absent
from DCOPs: (1) agents initially know the constraint graph but
only discover rewards through exploration (i.e., a pair of agents set
their values to explicitly discover a reward), (2) problems last a set
amount of time, (3) there are more combinations of domain val-
ues than can be explored within this time (disallowing exhaustive
exploration), and (4) agents seek to maximize the online global re-
ward over this time horizon T .

2.2 Motivating Domain
Modeling a problem as a DCEE is warranted when a set of agents

need to coordinate to maximize their shared reward, but are unable
to fully explore the entire space of their possible assignments. Such
a setting will most likely occur when there are many agents, a large
number of possible assignments, and a limited amount of time. We
explicitly do not consider centralized approaches to reduce com-
munication and improve robustness.

The DCEE mobile wireless network problem, which we have
simulated based on the implementation of Jain et al. [5], is used
as an example domain throughout this paper. During natural disas-
ters and other ad-hoc situations, personnel may quickly form such
a network by placing mobile robots in an area to relay information
(e.g., about endangered victims or fires). The robots must optimize
the network to ensure reliable and effective communication for the

2 31

R
1,2 R

2,3
x

x2
1

0 1
0 ?

?
...

n

? ? ? ?
?
?
?

3

?
15

m

x2

x1

0 1
0 7 ?

...
?

?

m

k ? ? ?

?

?
1 ? ?

Figure 1: This figure depicts three DCEE agents. Each agent can
select a value, and the instantaneous global reward depends on pairs of
agents’ selected values. Constraint rewards are only known once they
are explored.

duration of the task. Value settings correspond to agent (robot) lo-
cations, constraints are determined by the network topology, and
rewards are based on link quality between robots.

Our formulation of the mobile wireless network problem is based
on the capabilities of current low-cost physical robots. An agent
can measure the link quality between itself and each neighbor, cor-
responding to measuring the reward for the pair of agent assign-
ments. The time for movement in agents is assumed to dominate
communication and calculation time — we measure experiment
length by the number of rounds, defined by the period in which
every agent may decide to move to a new position and then reach
that position. All agents may choose to either stay in their cur-
rent position or explore. We also consider agents which have the
ability to backtrack to a previously explored position. To be con-
sistent with previous work [5], we assume that link qualities are
uncorrelated between locations (e.g., when the link quality is deter-
mined by signal strength in a multi-path environment) and that the
network topology is static.

2.3 Existing Algorithms
This section briefly discusses five algorithms previously intro-

duced and evaluated on both physical robots and simulated agents [5].
MGM-Omniscient-1 is based on MGM [9], where the prob-

lem’s reward matrix is artificially supplied (hence “Omniscient”)
and therefore represents an upper bound on solution quality for
k=1 agents. On each round, each agent (1) communicates its cur-
rent value to all neighbors (2) calculates and communicates its bid
(the expected gain in the reward if allowed to change its variable
assignment) (3) change its value if it has the highest bid per neigh-
borhood.

The remaining algorithms fall into two broad classes: Static Es-
timation (SE) and decision theoretic (i.e., Balanced Exploration,
or BE). The two static estimation algorithms differ from MGM-
Omniscient-1 in that they do not know their reward for unexplored
states. SE-Optimistic-1 is a greedy approach that assumes agents
will receive the maximum possible reward for unexplored value set-
tings, while SE-Mean-1 assumes unexplored variable settings will
result in the average reward.

BE-Rebid-1 is a decision theoretic method that computes the
expected reward of executing the explore or backtrack actions,
assuming that the probability distribution over rewards is known.
Exploring is evaluated by using order statistics while backtracking
returns the agent to a known setting (and then allows it to exploit
this reward for the remainder of the experiment). BE-Stay-1 is
similar to BE-Rebid-1, but does not allow backtracking. Instead,
every agent compares the expected reward it would receive if it
kept the same variable assignment (stay) with the expected reward
of exploring (explore).

3. EXTENDING TO K=2
This section describes our three novel DCEE algorithms. While

the previous approaches in Section 2.3 allowed only one agent per

110



neighborhood to select a new value, algorithms in this section fol-
low the framework of MGM-2 [13] and allow two agents in a neigh-
borhood to coordinate a joint variable change, as discussed in Sec-
tion 1. We implement the following k=2 algorithms so that they
may be considered “natural extensions” to existing k=1 DCEE al-
gorithms, where higher values of k imply increased teamwork.

Algorithm 1 describes code executed by each agent on every
round when executing any k=2 algorithm. The only variation in dif-
ferent algorithms comes in the functions getMaxGainAndAssign-
mentForPair() and getMaxGainAndAssignment(), which depend on
the particular estimation technique used, as discussed next.

MGM-Omniscient-2 extends MGM-Omniscient-1 so that two
agents may change value per neighborhood, and is artificially pro-
vided the full reward matrix; it may be considered a re-implementation
of MGM-2. Given sufficient time, MGM-Omniscient-2 will always
discover a locally optimal solution where no combination of one or
two neighboring agents can improve the global reward. This al-
gorithm represents an upper bound for k=2 algorithms in that it is
very unlikely that any algorithm which requires exploration would
be able to surpass the performance of an Omniscient algorithm. On
each round, an agent: (1) selects a neighbor and sends an Offer
message for a joint variable change, based on the maximal gain
— Algorithm 1, lines 4–5. (2) for each offer, sends an Accept or
Reject message reflecting the agent’s decision to pair with the of-
fering agent. Agents accept the maximum offer (lines 6–11). (3)
calculates the joint gain of the pair if an offer is accepted, and oth-
erwise calculates the gain of an individual change (lines 12–14).
(4) may change its variable setting if it has the highest gain in its
neighborhood (lines 18-21). If the agent is part of a pair, a Confir-
mVariableChange message is sent to the partnering agent. (5) exe-
cutes the joint / individual assignment (lines 29–30). Like MGM-
Omniscient-1, MGM-Omniscient-2 monotonically increases its so-
lution quality [9]. MGM-Omniscient-2 also requires more commu-
nication than MGM-Omniscient-1, but reaches higher or similar
solution quality [13]. As with other k=2 algorithms, single agents
may act alone, subsuming MGM-Omniscient-1.

SE-Optimistic-2 makes the same assumption as SE-Optimistic-
1; any unexplored reward is assumed to be optimal. This algorithm
(and those that follow) differ in how getMaxGainAndAssignment-
ForPair() and getMaxGainAndAssignment() (lines 4 and 14) calcu-
late utilities for possible assignments. Agents individually expect
to gain2 reward equal to n×Rmax −Rc when changing variables,
where n is the number of neighbors (i.e., constraints), Rmax is the
maximum possible reward per constraint, and Rc is the agent’s cur-
rent total reward. Agents that successfully pair then bid their joint
gain (line 15), equal to the sum of their individual gains with the
chosen neighbor, not double-counting the shared constraint, and
unpaired agents bid their individual gains.

SE-Mean-2 is identical to SE-Optimistic-2, but modifies its util-
ities so that unexplored variables are assumed to return the average
reward. Individual agents now expect to gain n × Rμ − Rc, and
compute the gain for pair based on this utility in getMaxGainAn-
dAssignment(). Note that although the DCEE problem is an opti-
mization problem (by definition), Mean is a satisficing algorithm:
agents only optimize until reaching an per-constraint average of μ.

BE-Rebid-2 is an algorithm that requires information about the
distribution of rewards. While such information is often avail-
able (e.g., a robot may collect a number of samples to estimate
the distribution), if it is unavailable, BE methods are inapplicable.

2Note that the agent’s expected gain is what it will receive from a
variable change, in expectation. When an agent explores, it may
expect to increase reward (a positive gain), but in fact receive a
decreased reward (a negative gain).

Algorithm 1 PSEUDOCODE FOR k=2 ALGORITHMS

1: for each neighbor n do
2: Send variable assignment and reward matrices to n
3: Receive variable assignment and reward matrices from n
4: Find maximum gain, g, the corresponding neighbor to pair with, p, and

the variable assignment, a:
g, p, a ← getMaxGainAndAssignmentForPair()

5: Send Offer to p
6: for all Offer messages received do
7: if (agent requesting to pair is p) then
8: Send Accept to p
9: else

10: Send Reject to p
11: Receive responses from neighbors, if any
12: if (reject[p]) then
13: p ← ∅
14: Find max gain and preferred assignment (individual update):

g, a ← getMaxGainAndAssignment()
15: Send Bid (g, p) to all neighbors
16: Receive Bids (gainNeighborsn) from all neighbors
17: G ← maxn gainNeighborsn

18: if (g > G) then
19: bChanging ← True
20: if (p �= ∅) then
21: Send ConfirmVariableChange to p
22: else
23: bChanging ← False
24: if (p �= ∅) then
25: Send ProhibitVariableChange to p
26: Receive any messages sent by neighbors
27: if (ProhibitVariableChange[p] and p �= ∅) then
28: bChanging ← False
29: if (bChanging) then
30: UpdateAssignment(a)

BE-Rebid-2 extends the BE-Rebid-1 algorithm by allowing pairs
of agents to select coordinated explore, stay, and backtrack ac-
tions. We consider four actions: explore-explore, explore-stay,
stay-backtrack, and coordinated backtrack.3 The coordinated
backtrack action is unique to this algorithm; it allows two agents
to simultaneously backtrack to a previous setting.

First, consider how BE-Rebid-1 determines the value of a sin-
gle agent backtracking or exploring. The value for backtracking
is Vback = Rbt, where Rb is the reward for the variable setting
with the agent’s highest discovered reward and t is the number of
remaining timesteps. The value for exploring, given that neighbors
do not move, is Vexplore(Rb, T, n) =

max
0≤te≤T

j
teμ(n)+ ts

Z
x>Rb

xQ(x, n, te)dx+ tsRbF (Rb, n)te

ff
(1)

After the agent sets te such that it maximizes this equation, it can
bid assuming that it can explore for te rounds, and then exploit for
ts = T − te rounds. Q(x, n, te) gives the probability of x being
the maximum reward among the te rewards explored (computed via
order statistics). F (x, n)t is the cumulative probability of drawing
a sample (from a distribution that takes into account n neighbors)
less than or equal to x in all of the t draws. μ(n) is the average
reward over n neighbors. The agent will thus choose to explore or
backtrack depending on which action’s expected value is larger.

In the k=2 variant, BE-Rebid-2, the gain of explore and back-
track actions are calculated as above. The gain of an action is
the difference between the expected reward of the action and Rct,
where Rc is the reward of the current variable setting. As in MGM-
Omniscient-2, agents offer gains over joint actions to their neigh-

3An agent may not change its value if a neighbor executes back-
track: explore-backtrack is an invalid joint action.

111



bors and then agents attempt to pair with the neighbor which offers
the maximum gain. The reward of joint exploration by agents i and
j, as calculated by agent j, is:

Vexp−exp = Vexplore:i(Rb:i, T, ni)+Vexplore:j(Rb:j , T, nj −1)

which calculates the sum of two gains (not double counting the
shared constraint). The joint gain of explore-stay is determined
by the exploring agent. Similarly, the joint gain of stay-backtrack
is calculated by the backtracking agent. Lastly, the gain of coor-
dinated backtrack is the difference between the best joint reward
experienced by the two agents and their current reward.

BE-Stay-2 may be used by agents that cannot backtrack. Sim-
ilar to Rebid, the reward for stay (Vstay) is Rct. An agent’s re-
ward for exploring can be calculated recursively: V (·, 0, ·) = 0
and V (Rc, T, n) = max(Vstay(Rc, T ), Vexp(Rc, T, n)), T > 0.

Vexplore(Rc, T, n) =

Z ∞

−∞
V (x, n)(V (x, T − 1) + x)dx

where V (x, n) is the expectation of receiving the total reward x
when the agent has n neighbors.

A combination of Vstay and Vexplore is used to calculate the joint
gains. As in BE-Rebid-2, the gain of joint exploration is calculated
as the sum of individual exploration utilities, not double counting
the common constraint. The gain of explore-stay is given by the
gain of the exploring agent and the gain of stay-stay is 0, by defini-
tion. Again, bidding proceeds as in MGM-Omniscient-2 and agents
may act individually if no team yields a higher expected reward.

4. EXPERIMENTAL ANALYSIS
Experiments in this section compare the performance of our DCEE

algorithms with those re-implemented from Jain et al. [5] in multi-
ple instances of the mobile wireless network problem. Our custom
simulator generates random network topologies and reward matri-
ces, and then sequentially tests algorithms on the same problem in-
stances. Consistent with past work, constraint rewards in the sim-
ulations are drawn from a normal distribution with μ = 100 and
σ = 16 over the (truncated) range [0,200]. Experiments run 40
agents for 100 rounds over 30 independent trials.

Topology k=1 k=2
Chain 136,409 160,098
Random 1/3 363,876 386,189
Random 2/3 509,008 534,400
Full 600,465 655,545

Table 1: Gains of Omniscient
Algorithms

The results in Table 1 lists
the gains (i.e., improvement
in total reward over no opti-
mization) for Omniscient k=1
and k=2 algorithms on graphs
with four different topologies,
including random topologies
where roughly 1

3
or 2

3
of the

number of links in a fully con-
nected graph are randomly added to the network. All were chosen
to be consistent with those used previously [5]. Recall that the
Omniscient algorithm artificially provides reward matrices to the
agents; this result shows that increased teamwork is beneficial, as
expected from previous DCOP work. Additionally, these results
help confirm that our k=2 implementation is correct.

Next, consider Figure 2(a), which shows the performance of
DCEE algorithms on the same graph topologies. Lower and upper
bounds were determined by disallowing all agent variable changes
and using BE-Rebid-1 (the highest performing algorithm previ-
ously reported). The results are reported as a scaled gain, where
0.0 corresponds to no optimization, and 1.0 is the gain achieved
by BE-Rebid-1. Any gain greater than zero represents an improve-
ment in the total reward. k=2 algorithms typically converge to a
higher final reward due to their ability to make joint decisions.

The k=2 algorithms outperform the k=1 algorithms in the ma-
jority of situations, except for SE-Optimistic-1 and BE-Rebid-1

on sparse graphs. For instance, SE-Optimistic-1 and BE-Rebid-1
outperform their k=2 counterparts on chain graphs (paired t-tests,
p < 5.3 × 10−7), and BE-Rebid-1 outperforms BE-Rebid-2 on
Random graphs with 1

3
of their links (although the difference is not

statistically significant).
However, the Rebid and Optimistic are the best performing al-

gorithms, making this behavior particularly troubling. That k=2
does not dominate other approaches is a particularly surprising re-
sult precisely because previous DCOP work showed that k=2 al-
gorithms reached higher final rewards [9, 13]. We term this phe-
nomena the team uncertainty penalty. Note that this penalty strictly
affects total reward: it does not consider any penalty from increased
communication or computational complexity. Supplemental exper-
iments4 that vary the number of agents on different topologies and
vary the experiment lengths all show that k=2 is superior to k=1
variants — the factor most critical to relative performance is the
graph topology. To investigate this phenomena, we next consid-
ered a set of sparse graphs with random topologies.

Figure 2(b) compares the relative performance of the k=1 and
k=2 variants of Optimistic and Rebid on random topologies. The
first trend to notice in Figure 2(b) is that BE-Rebid-1 outperforms
BE-Rebid-2 on sparse graphs. The lower the average numbers of
neighbors agents have in a graph, the better the k=1 variant will
perform. This is in contrast to Omniscient algorithms, where k=2
always outperforms k=1. The second trend to notice is that both
Optimistic algorithms perform quite poorly on random graphs, as
shown before in Figure 2(a). In Optimistic algorithms, an agent’s
bid is going to be proportional to the number of neighbors it has;
agents with high numbers of neighbors will consistently win bids,
blocking others in the neighborhood, as discussed elsewhere [5].

Optimistic algorithms perform poorly on random graphs; to bet-
ter understand how joint moves affect performance, we generated
a series of graphs with regular topology. All agents in such graphs
have the same number of neighbors, allowing for clearer analy-
sis of algorithmic performance. Figure 2(c) shows the scaled gain
of the two Optimistic and the two Rebid algorithms for different
regular graph structures: the x-axis varies the number of neigh-
bors in a regular graph structure; y-axis is the agents’ scaled gain.
In Figure 2(b), the performance of the k=2 version of Rebid im-
proved relative to the k=1 version as density increased. Figure 2(c)
shows that this trend holds for both Rebid and Optimistic in reg-
ular graphs. In particular, k=1 outperforms k=2 for both Opti-
mistic and Rebid in graphs with three and five neighbors per agent
(p < 1.4 × 10−4). SE-Optimistic-2 outperforms SE-Optimistic-1
on regular graphs with twenty neighbors (p < 8.6 × 10−4) while
the two Rebid algorithms do not have statistically significant gain
differences.

To further confirm this phenomenon, we implemented SE-Optimistic-
3, a k=3 version of our Optimistic algorithm. SE-Optimistic-3 dif-
fers primarily from SE-Optimistic-2 in that reward matrices need
to be shared between agents at a hop distance of two, whereas SE-
Optimistic-2 needs to share information only with neighbors. Pseu-
docode for SE-Optimistic-3 may be found online.4

Figure 3 shows the results from preliminary experiments where
10 agents are run for 50 rounds. In a chain graph, the k=1 ver-
sion of Optimistic performs better than k=2, which performs better
than k=3. In the full graph, SE-Optimistic-3 is better than k=2,
which is better than k=1. All differences in the chain graphs are
statistically significant (p < 0.022), and k=2 algorithms outper-
form their k=1 counterparts in the full graphs with statistical sig-
nificance (p < 0.015). The k=3 Omniscient algorithm follows the

4http://teamcore.usc.edu/dcop/

112



(a) Different Graph Topologies (b) Different Random Topologies (c) Regular Graph Topologies

Figure 2: (a) shows how the scaled cumulative gain for algorithms differ per network topologies, in (b) BE-Rebid-2 outperforms BE-Rebid-1 as
graph density increases, and (c) shows relative performance of k=1 and k=2 change with the number of neighbors where the labels on the y-axis show
the number of neighbors each agent has in the regular graph topology.

trends seen earlier in Table 1 by dominating MGM-Omniscient-2,
which in turn dominates MGM-Omniscient-1 (p < 4.0 × 10−4

for Omniscient graphs). These results confirm that higher amounts
of teamwork always improve agent performance in Omniscient al-
gorithms, but may decrease performance in non-Omniscient algo-
rithms.

Figure 3: SE-Optimistic-3 is worse
than k=1 and k=2 on chain graphs, but
is better on full graphs.

Most previous work in
teamwork and joint ac-
tion, including previ-
ous results in k-optimal
algorithms, caused us
to expect that increas-
ing the level of team-
work in decision mak-
ing would lead to im-
proved final solution
quality in our results.
In direct contradiction
with these previous ex-
pectations, we have shown
that in DCEE prob-
lems, blindly increas-

ing the number of agents that can execute a joint action may ac-
tually decrease the final solution quality. We have been able to iso-
late situations where this phenomenon occurs — in graphs with low
density, k=2 algorithms can perform worse than k=1 algorithms.
The next section explains the origin of this team uncertainty penalty
with the ultimate goal of improving our algorithms so that team-
work does not decrease performance.

5. UNDERSTANDING TEAM UNCERTAINTY
This section presents empirical justification for the team uncer-

tainty penalty, as well as motivating how algorithms may be en-
hanced to decrease such a penalty.

5.1 Relative Performance of k=1 and k=2
As discussed above, the primary deciding factor in the perfor-

mance of SE-Optimistic-2 and BE-Rebid-2, relative to their k=1
counterparts, is the average number of neighbors. We expected
that k=2 algorithms would allow more constraints to change (i.e.
change associated variable assignments), because pairs of agents
can coordinate joint moves. To better understand the team uncer-
tainty penalty, we first hypothesized that our k=2 algorithms may
fail to optimize more constraints than the k=1 algorithms. Fig-
ure 4(a) shows the performance of four algorithms on different reg-
ular graphs. The x-axis displays the graph density (i.e., number of
neighbors) and the y-axis shows the average number of constraints

changed per round. This graph shows that k=2 does perform as
expected, changing more constraints than k=1.

Given that k=2 changes more constraints, we next considered
that k=2 changes could be less “valuable.” Figure 4(b) displays the
same data, but now the y-axis shows the average immediate reward
improvement for all agents that change variables during the exper-
iment, normalized by the number of constraints. For instance, in
ten trials of 100 rounds, SE-Optimistic-2 agents on a density three
graph changed a total of 59,410 constraints (Figure 4(a)). On av-
erage, each variable change resulted in an immediate improvement
to a constraint’s reward by 0.41 (Figure 4(b)).

The two important trends to note are that (1) both k=2 algo-
rithms increased the per-constraint improvement as the density of
the graphs increase, and (2) k=1 algorithms have a higher per-
constraint improvement than their k=2 counterparts in every case.
The k=2 performance trend will be examined in detail in Section 5.2.
The trends in Figures 4(b) and 4(a) combine to explain the relative
algorithmic performance of k=1 and k=2 algorithms. k=1 algo-
rithms consistently receive a higher improvement per constraint,
relative to k=2. However, k=1 algorithms affect fewer constraints
than k=2 on average. As the density increases, the difference in the
per-constraint improvement in k=1 and k=2 decreases. In contrast,
the difference between the number of constraints changing in k=1
and k=2 increases as density increases. Thus, as the graph density
increases, k=2 is able to overcome k=1.

5.2 Few Neighbors Curtails k=2 Performance
This section analyzes why SE-Optimistic-2 and BE-Rebid-2 pro-

vide lower average reward improvement in graphs with few neigh-
bors per agent (Figure 4(b)). To begin, consider Figures 5(a) and 5(b).
Both graphs show the average performance on regular graphs with
different densities. The x-axis shows the agents’ bids, normalized
per-constraint, of all agents that win the bid to change variables.
The y-axis plots the gain, again normalized per-constraint. Only
pairs of agents are considered (the few single agent actions exe-
cuted by these k=2 algorithms are ignored). Each of the trials con-
tain thousands of points; points are binned together along the x-axis
and vertical error bars show the standard error. Both figures show
that when the algorithms have low bids, they decrease the improve-
ment per-constraint.

It is clear in Figure 5(a) that changing variables because of low
bids in low density graphs cause more harm than in high density
graphs. This helps to explain the behavior in Figure 4(b) — as
the graph density increases, BE-Rebid-2 improves relative to BE-
Rebid-1. Figure 4(c) shows the distribution of bids in BE-Rebid-2,
confirming that all different density graphs considered have a sub-
stantial number of low bids. Figure 5(b) shows a similar phenom-

113



(a) Avg. Constraints Changed (b) Avg. Reward Improvement (c) Bid Histograms

Figure 4: The average number of constraints changed per round in (a) show that in regular graphs, k=2 algorithms always change more constraints
(i.e. associated variable assignments). (b) shows average per-constraint improvement for different regular graphs: k=1 algorithms have higher
improvement. Histograms in (c) show how often algorithms allow agents to change variables on regular graphs with different densities.

ena for SE-Optimistic-2, although it is harder to see. In low density
graphs, Optimistic agents have a wider range of possible bids than
in a high density graph.5 This allows agents in a low density graph
to make larger “mistakes” than agents in a high density graph. Fig-
ure 4(c) shows that SE-Optimistic-2 bids follow a roughly normal
frequency distribution for each graph density and that lower den-
sity graphs produce more bids that are less than 100 (resulting in
an average negative gain).

The experiments in these sections show that when bids are low,
agents are more likely to receive a negative gain. Furthermore, as
the graph density decreases, agents make lower bids, risking larger
negative gains (relative to high density graphs). This behavior sug-
gests that both BE-Rebid-2 and SE-Optimistic-2 can be improved
by changing the bidding behavior — it appears that the algorithms
are overly aggressive, and prohibiting them from changing con-
straints that have relatively low bids may increase their achieved
gains. These insights will be leveraged in Section 6 to improve al-
gorithmic performance, ameliorating the team uncertainty penalty.

5.3 In Contrast: Mean and Stay
Recall that in Figure 2(b) SE-Mean-2 and BE-Stay-2 outperform

their k=1 counterparts — these two algorithms do not exhibit the
team uncertainty penalty. The primary reason is that they are all
very conservative algorithms in their bidding. Mean

Regular Graph: Density 5
Algorithm Constraints Per-constraint

Changed Improvement
Opti-1 28.9 0.5
Opti-2 42.6 0.3
Mean-1 0.8 6.6
Mean-2 0.9 6.4
Rebid-1 20.1 0.9
Rebid-2 27.2 0.4
Stay-1 1.3 5.1
Stay-2 1.4 3.6

Table 2: Both Mean and Stay algo-
rithms change fewer constraints and re-
ceive higher gain per constraint change
than Optimistic and Rebid.

agents assume that
a changed variable
will only return the
mean link value, caus-
ing it to drastically
lower its bids rel-
ative to Optimistic.
Likewise, Stay does
not allow agents to
backtrack, forcing
the agents must be
more cautious than
Rebid. If an agent
reaches a high val-
ued location in Re-
bid, it may continue

exploring because it can return to the position in the future, whereas
if a Stay agent explores, it can never return to a previous location.

Both k=1 and k=2 variants of Mean and Stay change variables
much less frequently than Optimistic and Rebid. Additionally, this

5The (per agent) average link value has a low variance in high den-
sity graphs due to many values being averaged, while the reverse is
true for low density graphs.

results in a higher per-constraint improvement than SE-Optimistic-
2 and BE-Rebid-2. Table 2 gives an example comparison of the
algorithms’ performance on a regular graph of density five. Opti-
mistic and Rebid algorithms change one to two orders of magnitude
more constraints than Mean and Stay (per round). The cautious na-
ture of Mean and Stay avoids the team uncertainty penalty, but at
the expense of overall decreased total on-line reward (relative to
Optimistic and Rebid, shown in Figure 2(b)). Each variable change
in Mean and Stay is relatively good, but so few changes are made,
performance suffers (relative to Optimistic and Rebid).

6. DCEE ALGORITHM EXTENSIONS
This section revisits the SE-Optimistic-2 and BE-Rebid-2 algo-

rithms to ameliorate the team uncertainty penalty. In principle, one
could evaluate a graph and a priori decide whether a k=1 or k=2
is likely to be superior, based on the graph density. A more robust
solution is to design a k=2 algorithm which can also perform well
at low densities, potentially even outperforming the existing k=2
algorithms. The algorithms introduced here empirically demon-
strate the soundness of the arguments in the previous section and
show that the utility of teamwork can be improved by accounting
for the team uncertainty penalty. The first method uses a threshold
to determine when joint actions are allowed. The second method
discounts actions in unknown parts of the reward matrix; teamwork
is always useful when rewards are known, but may be harmful to
agents when exploring.

6.1 Discouraging Joint Actions
The first solution to decrease the team uncertainty penalty is to

discourage joint actions with low bids. Recall that in Figures 5(a)
and 5(b), pairs of agents that made low bids (and won the right to
change variables) were much more likely to receive negative gains
than those that made high bids. In this section, we consider using a
threshold parameter: if a pair of agents do not bid to improve by at
least t units of reward per constraint in the next round, the algorithm
disallows the joint action and reverts to k=1. Put differently, this
method uses a parameter to decide when to use teamwork and when
agents should act alone.

SE-Threshold-2 is identical to SE-Optimistic-2, except that agents
are allowed to form a pair only if their bid will be at least t×(number
of agents that neighbor the pair). BE-Threshold-2 is similar: pairs
may form only if the pair has a bid above t×(number of agents that
neighbor the pair). Agents only execute joint actions when their
bids are quite high (i.e., there should be a significant advantage to
the joint move) and otherwise “play it safe” with k=1.

To test these two algorithms, we first ran preliminary experi-
ments testing out roughly ten different values of t for both. Fig-

114



(a) Rebid Gains (b) Optimistic Gains (c) Improved SE Algorithms

Figure 5: Graphs (a) and (b) shows the per-constraint gain per per-constraint bid for pairs that change variables in BE-Rebid-2 and SE-Optimistic-2
on different regular graph densities. (c) shows SE-Threshold-2 with t = 100 and SE-i-2 with i = 110.

ures 5(c) and 6(a) shows the performance of SE-Threshold-2 and
BE-Threshold-2, respectively. In these two graphs, both algorithms
use a single value of t, confirming that performance can be im-
proved by discouraging teamwork. SE-Threshold-2 outperforms
SE-Optimistic-2 on very low density graphs (for instance, SE-Threshold-
2 outperforms SE-Optimistic-2, p < 3.4 × 10−3, but underper-
forms SE-Optimistic-1, p < 8.0×10−2), and dominates SE-Optimistic-
1 on high density graphs. Likewise, Rebid-Threshold-2 outper-
forms BE-Rebid-2 on low density graphs and outperforms BE-Rebid-
1 on high density graphs. Using a threshold reduces the team un-
certainty penalty in both cases.

A second set of results tested how the algorithms performed on
a single graph type with different parameter settings. Figure 6(b)
shows the results of BE-Threshold-2 on regular graphs of varying
densities. The y-axis shows the net gain on different graph types.
The points at the far left represent the performance of BE-Rebid-1,
the points at the far right BE-Rebid-2, and the points connected by
lines show the performance of BE-Threshold-2 for different val-
ues of t (shown on the x-axis). As expected, different thresholds
maximize performance for different graphs. An important open
question is whether these parameters can be automatically tuned.
A fixed threshold setting shows substantial improvements, but even
higher gains could be achieved if the algorithmic parameters can be
set automatically per graph, or even per agent.

6.2 Discounting All Bids Under Uncertainty
The second solution is to discount all bids. Both SE-Optimistic-

2 and BE-Rebid-2 receive negative average reward with low bids.
Reducing all exploration bids via a per-constraint discount discour-
ages agents from changing variables when they have low bids, re-
sulting in algorithms that are less aggressive. Put differently, our
results show that joint actions are more likely to make mistakes
than single agent actions in the presence of uncertainty. This pa-
rameter reduces the value of exploration, encouraging exploitation.

SE-i-2 is similar to both SE-Mean-2 and SE-Optimistic-2 in that
all unexplored variable assignments are assumed to receive a re-
ward per link of i (where i=μ for Mean and i=MAX for Optimistic),
effectively controlling the calculated utility of exploration. While
Optimistic agents change their values throughout all trials, SE-i-2
agents will stop optimizing once all agents have a reward of at least
i×numNeighbors. BE-i-2 generalizes the BE-Rebid-2 algorithm so
that all utilities for the explore action are discounted, proportional
to the number of constraints that would be changed. This shift in
utility discourages agents from being overly Optimistic with their
bids and encourages agents to exploit (i.e., stay and/or backtrack),
rather than explore.

Figure 5(c) demonstrates that SE-i-2 generally outperforms all
other algorithms, regardless of density. Particularly impressive is

the performance on chain and random graphs, substantially out-
performing the Optimistic algorithms as SE-Threshold-2. The dis-
count factor allows agents with high degree to more easily decline
to move such that they do not dominate their neighbors (as dis-
cussed earlier in Section 4). SE-i-2 is the highest performing SE al-
gorithm, with the exception of full graphs. The performance of BE-
i-2 in Figure 6(a) demonstrates BE-i-2 is similar to BE-Threshold-
2, in that it outperforms BE-Rebid-2 on sparse graphs and outper-
forms BE-Rebid-1 on dense graphs. These results suggest that BE-
Threshold-2 is the best k=2 BE algorithm, in that it more often out-
performs BE-i-2 than not, and avoids the team uncertainty penalty
(unlike BE-Rebid-2). Note that BE-Rebid-2 outperforms both BE-
Threshold-2 and BE-i-2 on the full graph; it is not surprising that
the most aggressive algorithm (BE-Rebid-2) does well on this high
density graph where 40 agents are fully connected.

Figure 6(c) is analogous to Figure 6(b): it shows how the perfor-
mance of SE-i-2 changes on a single graph type as the parameter
i is varied. As before with BE-Threshold-2, the parameter value
that produces maximal in SE-i-2 gain depends on the graph type.
If a single parameter is used, SE-i-2 is a significant improvement
over SE-Optimistic-2. If multiple parameters may be tuned, or set
automatically, performance can be increased still further.

This section has presented novel algorithms that explicitly ac-
count for the team uncertainty penalty. In particular, the SE-i-2
algorithm worked surprisingly well, outperforming all other SE al-
gorithms, with the exception of full graphs. These algorithms show
that both reducing the calculated utility of joint moves and reduc-
ing the utility of acting under uncertainty improve performance.
This represents an important confirmation that the team uncertainty
penalty can be reduced, if not avoided, by explicit consideration
during an algorithm’s design.

7. RELATED WORK
In multi-agent work, teamwork is typically considered benefi-

cial, although if too much is shared, computational requirements
will explode [3]. To our knowledge, this is the first work to show
that increasing the amount of teamwork may actually be harmful,
without counting communication or computation cost. For exam-
ple, previous work [6] has focused on “level of cooperativeness”
in DisCSPs (distributed constraint satisfaction), as well as on the
size of a mediation group to select asynchronous partial overlay
DisCSP algorithms [1]. While these results show that increased
cooperativeness may not always improve performance, the focus of
that research was run-time performance rather than solution qual-
ity, which is the exclusive focus of our work.

Zhang et al. [19] analyze the distributed stochastic search algo-
rithm (DSA) and show that it often performs better than the dis-
tributed breakout algorithm (DBA) along multiple dimensions, en-

115



(a) New BE Algorithms (b) Tuning BE-Threshold-2 (c) Tuning SE-i-2

Figure 6: (a) shows the performance of BE-Threshold-2 using t = 15 and SE-i-2 using i = 4. (b) shows how the performance of BE-Threshold-2
change as its parameters are tuned (BE-Rebid-1 is at the far left and BE-Rebid-2 is at the far right, for comparison). (c) shows the performance of
SE-i-2 as i is tuned, in comparison to SE-Optimistic-1 (left) and SE-Optimistic-2 (right).

couraging many researchers to extend the DSA framework (c.f.,
Zivan [20]). Because MGM is similar to DBA, we also investi-
gated using DSA as a base for algorithms in the DCEE problems,
although DSA requires tuning of a real-valued parameter that af-
fects its probabilistic update rule. However, our results (omitted
for brevity) showed that our MGM-based algorithms often outper-
formed DSA, and substantially outperformed DSA algorithms if its
free parameter was not carefully tuned.

Other researchers have examined lower-level concerns in mobile
wireless networks (c.f., the LANdroids6 project) rather than explicit
multi-agent coordination issues. Marder et al. [11] formulate dy-
namic sensor coverage as a “potential game," similar to a DCOP.
Stranders et al. [16] use the max-sum algorithm to coordinate mo-
bile sensor movement over a small grid. Kok and Vlassis [7] use
a reinforcement learning approach that applies to multi-agent tasks
with coordination graphs.

While single-agent approaches to exploration vs. exploitation
may provide insight into DCEE problems (c.f., multi-armed ban-
dits [15]), coordinated exploration is significantly more difficult be-
cause rewards depend on pairs of agents: agent coordination is crit-
ical. Distributed POMDPs [2] are also not directly relevant: DEC-
POMDPs plan over uncertainty in agent action outcomes, whereas
DCEE actions have known outcomes but uncertain rewards.

8. CONCLUSION
A major contribution of this paper is establishing that increased

teamwork under uncertainty may sometimes degrade performance.
Additionally, it has presented and empirically tested a set of k=2
algorithms, investigated the team uncertainty penalty in the context
of DCEE problems, and presented a second set of improved algo-
rithms that reduce the penalty’s impact. The two types of algorith-
mic solutions, disallowing low valued joint actions and discounting
the utility of actions under uncertainty, are very general. In the
future, we plan to investigate how well these teamwork ideas gen-
eralize to, and how the team uncertainty penalty manifests in, other
settings, such as multi-agent reinforcement learning. Additionally,
we intend to explore how to best incorporate prior knowledge about
the reward function, and to attempt to more formally quantify the
amounts of teamwork used by different algorithms in DCEE do-
mains.

Acknowledgements
We would like to thank W. Bradley Knox, Chris Kiekintveld, James
Pita, Atul Kumar, Scott Alfeld, and the anonymous reviewers for
helpful comments and suggestions. This work was supported in
part by Perceptronics Solutions.

6www.darpa.mil/ipto/programs/ld/ld.asp

9. REFERENCES
[1] M. Benisch and N. Sadeh. Examining DCSP coordination tradeoffs.

In AAMAS, 2006.

[2] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of
decentralized control of Markov decision processes. In UAI, 2000.

[3] E. H. Durfee. Blissful ignorance: Knowing just enough to coordinate
well. In AAAI, 1995.

[4] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cogent,
J. Morgan, and M. Pollack, editors, Intentions in Communication.
MIT Press, 1990.

[5] M. Jain, M. E. Taylor, M. Yokoo, and M. Tambe. DCOPs meet the
real world: Exploring unknown reward matrices with applications to
mobile sensor networks. In IJCAI, 2009.

[6] H. Jung and M. Tambe. Argumentation as distributed constraint
satisfaction: Applications and results. In AAMAS, 2001.

[7] J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement
learning by payoff propagation. JMLR, 7:1789–1828, 2006.

[8] H. J. Levesque, P. R. Cohen, and J. Nunes. On acting together. In
AAAI, 1990.

[9] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for DCOP: A graphical-game-based approach. In PDCS,
2004.

[10] R. Mailler and V. Lesser. Solving distributed constraint optimization
problems using cooperative mediation. In AAMAS, 2004.

[11] J. Marden, G. Arslan, and J. Shamma. Connections between
cooperative control and potential games illustrated on the consensus
problem. In European Control Conference, 2007.

[12] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality
guarantees. AIJ, 161:149–180, 2005.

[13] J. P. Pearce, M. Tambe, and R. Maheswaran. Solving multiagent
networks using distributed constraint optimization. AI Magazine,
29(3):47–66, 2008.

[14] A. Petcu and B. Faltings. A scalable method for multiagent constraint
optimization. In IJCAI, 2005.

[15] H. Robbins. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58:527–535, 1952.

[16] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings.
Decentralized coordination of mobile sensors using the max-sum
algorithm. In IJCAI, 2009.

[17] M. Tambe. Towards flexible teamwork. JAIR, 7:83–124, 1997.

[18] Y. Xu, P. Scerri, B. Xu, S. Okamato, M. Lewis, and K. Sycara. An
integrated token-based algorithm for scalable coordination. In
AAMAS, 2005.

[19] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties, comparison
and applications to constraint optimization problem in sensor
networks. AIJ, 161:55–87, 2005.

[20] R. Zivan. Anytime local search for distributed constraint
optimization. In AAAI, 2008.

116


